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Understanding the short-run dynamics of conflict and forced displace-
ment is crucial for the design of effective policy responses, yet quantita-
tive analyses in this realm are sparse. This is primarily due to the scarcity
of high-frequency displacement data and methodological challenges arising
when modeling imperfect data collected in conflict zones. Addressing both
issues, we develop a Bayesian panel regression model to assess the short-
term impact of conflict on displacement in Somalia, utilizing weekly panel
data that encompasses eight million displacements and 19,000 conflict events
from 2017 to 2023. Results suggest a rapid and nonlinear displacement re-
sponse postconflict, with significant heterogeneity in effects dependent on the
nature of conflict events. In a displacement forecasting exercise, our model
outperforms standard benchmarks, underscoring its potential for informing
decision-makers in crisis scenarios.

1. Introduction. In 2022, the United Nations High Commissioner for Refugees
(UNHCR) reported 108 million forcibly displaced persons worldwide, surpassing 1% of
the global population.1 This displacement crisis is primarily attributed to conflict and gener-
alized violence (Schmeidl (1997, 2001), Davenport, Moore and Poe (2003), Hatton (2009),
Conte and Migali (2019), Abel et al. (2019)). A detailed understanding of the dynamics of
conflict and displacement is crucial for policymakers, NGOs, and other stakeholders involved
in humanitarian assistance. This paper contributes to this understanding by focusing on the
immediate effects of conflict events on forced displacement with a specific focus on Somalia.
The situation in Somalia is especially severe, with an estimated 3.8 million people, or about
20% of the population, internally displaced in 2022 (DRC (2022)).

According to theoretical models of displacement and qualitative evidence, the impact of
conflict on displacement materializes rapidly and in the immediate spatial proximity of the
conflict event.2 This suggests that empirical models examining conflict and displacement
should ideally focus on small-scale geographical areas and short-term effects. However, this
presents quantitative research in this field with two serious challenges. First, granular data on
displacement is only rarely available. This is largely due to inadequate data infrastructure in
areas where this issue is most relevant. As a result, most quantitative literature on the topic
focuses on aggregate data, for instance, on the country-year level.3 Although such data can
reveal broad patterns, it fails to capture the immediate impact of conflict, thereby limiting
the direct applicability of these studies to policy formulation. Second, the task of modeling
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1https://www.unhcr.org/global-trends-report-2022.
2A review of empirical and theoretical literature on conflict and displacement is provided in the Supplementary

Material (Zens and Thalheimer (2025)).
3Exceptions include studies using mobile phone tracking (Lu, Bengtsson and Holme (2012), Tai, Mehra and

Blumenstock (2022)) or analysis of refugee flows from Ukraine in 2022 (Wycoff et al. (2023)), which underscore
the rapid impact of conflict on displacement.
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disaggregated data on conflict-related displacement presents significant challenges in itself.
Such data usually stems from volatile conflict environments, leading to issues such as ag-
gravated sampling noise and partially missing data (Sarzin (2017)). Moreover, the generally
limited availability of data in conflict-affected areas makes it difficult to statistically account
for spatial and temporal dependencies that may characterize fine-grained displacement data.

In this article we aim to overcome both of these challenges. We analyze weekly panel
data covering more than eight million internal displacements and 19,000 conflict events in
74 districts of Somalia between 2017 and 2023. We highlight several empirical issues that
potentially arise when working with disaggregated data from conflict zones. To address these
issues, we propose a specialized Bayesian statistical framework. This framework is grounded
in both theoretical considerations on the dynamics of human displacement in Somalia and
in stylized empirical facts derived from the data. The model integrates Bayesian factor mod-
els (Conti et al. (2014)), dynamic linear models (West and Harrison (1997)), distributed lag
models (Schwartz (2000)) as well as Bayesian shrinkage and smoothing priors (Lang and
Brezger (2004), Piironen and Vehtari (2017)). Combining these components in a single panel
regression framework allows us to flexibly account for latent spatiotemporal dependencies
while ensuring a certain robustness against overfitting noisy data.

We apply the model to displacement data from Somalia to provide an in-depth analysis of
the short-run impact of different types of conflict events on displacement. Our findings sug-
gest a rapid and nonlinear displacement response postconflict, with significant heterogeneity
in effects dependent on the nature of conflict events. In addition, we demonstrate the utility of
the approach in the context of displacement forecasting, where our framework outperforms
several benchmark models in producing short-run displacement predictions.

This article hence makes three key contributions. First, we introduce a statistical frame-
work that can be used to explore and analyze the underlying drivers of forced displacement
and has a broader application in Bayesian regression analysis of high-resolution panel data.
The model can be used to evaluate predictions obtained from theoretical models on forced
displacement. In addition, models that can credibly attribute displacement to conflict have ap-
plications in the human rights context and have, for instance, been used in war crime trials in
The Hague (Ball and Asher (2002)). Second, we provide policy-relevant evidence on the im-
pact of conflict on internal displacement in Somalia, contributing directly to the literature on
short-run drivers of displacement. Given the challenges in data collection and modeling, pre-
vious research in this area has partially yielded inconsistent results; see the literature review
in the Supplementary Material. The obtained impact estimates can further be used to inform
policymakers, NGOs, and complementary theoretical and simulation-based approaches, re-
lying, for instance, on agent-based models. Third, our evaluation of the predictive power of
the model contributes to the displacement forecasting literature. This evaluation is particu-
larly relevant given the previously demonstrated limited gains of black-box machine learning
tools over simple benchmarks in predicting displacement in Somalia (Pham and Luengo-Oroz
(2023)).

The remainder of this article is structured as follows. Section 2 introduces the data we use
and highlights challenges when modeling detailed displacement data. In Section 3 we pro-
pose a specialized Bayesian statistical framework for modeling conflict and displacement.
Section 4 presents our results on the short-term dynamics of conflict-driven displacement
and the results of the displacement forecasting exercise. Section 5 concludes with key in-
sights for empirical studies on conflict and displacement, strategic considerations for policy
development, and pathways for future research.

2. Data description. In this section we describe the two main data sets from which we
source the variables used for the empirical analysis in detail, highlighting potential method-
ological challenges. Limitations and potential shortcomings of the data are discussed in a
dedicated section in the Supplementary Material.
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FIG. 1. Patterns of observed internal displacements: (a) shows weekly time series for eight example districts
across the sample period from January 2017 to July 2022. y-axis is on a log scale. x-axis indicates weeks in the
sample period. (b) shows average log displacements in each of the 74 districts of Somalia.

2.1. Data on internal displacement. The dependent variable of interest is the logarithm
of the number of internal displacements reported in the 74 districts of Somalia for each week
from January 2017 to July 2023, a period of T = 343 weeks. The data is obtained from
the Protection and Return Monitoring Network (PRMN) Somalia led by the UNHCR. This
monitoring network aims to document the number of internally displaced persons (IDPs) per
district every week (UNHCR (2017)). The data is collected by the Norwegian Refugee Coun-
cil (NRC) and local partners on behalf of the UNHCR. Specifically trained monitors measure
the movements of displaced populations at strategic points, including transit sites and IDP
settlements. The data are obtained based on individual or group interviews of displaced per-
sons and make use of standardized forms to collect information. Quality control procedures
are in place to ensure a reasonable level of data quality after the partners upload the results
of these interviews onto an online platform.

Figure 1 visualizes the average log displacement in each district as well as eight example
time series of observed log displacements. A preliminary investigation of these series makes
some stylized facts of the data apparent. First, the unconditional means of the time series
vary strongly across districts, reflecting both differences in population size and resilience to
factors leading to displacement. Furthermore, the displacement series often follow district-
specific and complex trending patterns. These slow-moving trends potentially reflect slow-
onset hazards such as droughts or changing economic conditions. While the variance around
these trends is relatively small in some districts, the behavior of the displacement flow series
in other districts is much more volatile.

In addition to these within-district temporal dependency patterns, cross-district spatial de-
pendencies are to be expected as well. For instance, several districts in Southern Somalia are
connected via the major rivers Juba and Shebelle. Flash floods caused by rising river levels
can lead to simultaneous displacement fluctuations in these districts. Similarly, droughts or
economic crises are likely to affect displacement in multiple districts jointly. A major mod-
eling challenge in this context is that no explicit measurements of river levels, flood depth,
and economic or drought developments are available. Additionally, 30.4% of week-district
cells are treated as missing observations due to the absence of reported displacement counts.
We aim to address all of these stylized facts and modeling issues explicitly in the statistical
framework and estimation algorithm outlined in Section 3.

2.2. Data on conflict and conflict-related events. The main independent variable of in-
terest is the occurrence of conflict and conflict-related events, which we measure using data
obtained from the Armed Conflict Location & Event Data Project (ACLED). This event-
based data set collects occurrences of political violence and protest including, for instance,



SHORT-TERM DYNAMICS OF CONFLICT-DRIVEN DISPLACEMENT 289

FIG. 2. Average weekly occurrence of various types of conflict and conflict-related events from January 2017 to
July 2023. Data is presented on a square root scale, and scales differ across panels.

military battles, suicide bombings, and riots (Raleigh et al. (2010)). ACLED includes in-
formation on events by date, location, actor, and event type. It is one of the highest-quality
data sets on violent events on a disaggregated scale and is widely used in research analyzing
the causes and effects of conflict (Eck (2012), Thalheimer, Schwarz and Pretis (2023), Oh
et al. (2024)). Data is collected via traditional media, reports of international institutions and
NGOs, local partners, and social media channels such as Twitter or Telegram. The reliability
of the data is ensured via several layers of quality control, including source control and peer
review mechanisms, involving academic researchers, policy and practitioner communities as
well as country experts.

ACLED events are categorized into several event types, allowing us to investigate the im-
pact of different classes of conflict and conflict-related events on displacement. Specifically,
we will base our investigation on four ACLED categories. First, battles include events that
are defined as a violent interaction between two organized armed groups at a particular time
and location. For instance, this category includes clashes of armed government forces and
rebel groups. Second, explosions and remote violence events are defined as “one-sided vio-
lent events in which the tool for engaging in conflict creates asymmetry by taking away the
ability of the target to respond” and include suicide bombings or artillery shelling. Third,
violence against civilians events capture any event “where an organized armed group delib-
erately inflicts violence upon unarmed noncombatants.” such as shootings, sexual violence,
or kidnapping of civilians. Fourth, the event type strategic development captures events “re-
garding the activities of violent groups that is not itself recorded as political violence, yet may
trigger future events or contribute to political dynamics within and across states.” Events that
fall in this category include the formation of new rebel groups, the establishment of new
headquarters, or nonviolent transfers of territory. All of the above definitions are taken from
the ACLED codebook4 and are repeated here for completeness. Figure 2 plots the average
number of different types of conflict events across districts in Somalia. In total, in the sam-
ple period between January 2017 and July 2023, around 19,000 relevant events are recorded
in the ACLED database, where 52.6% are coded as battles, 23.6% are coded as explosive
and remote violence, 17.4% fall in the category violence against civilians, and the remaining
6.4% are strategic developments. More context on the civil war in Somalia is given in the
Supplementary Material.

4ACLED Codebook Version 1 from January 2021, available online at the ACLED website https://acleddata.
com/.
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3. Statistical framework. Let yit denote the logarithm of the number of displacements5

in district i (i = 1, . . . ,N ) in week t (t = 1, . . . , T ). We model yit as the sum of a component
Cit , representing conflict-driven displacement, and Oit , representing displacement due to
nonconflict events,

(1) yit = Cit + Oit .

Conflict-driven displacement is further decomposed as Cit = Ait + Iit + Fit , where Ait

are anticipation effects, Iit are immediate effects on impact, and Fit are aftermath effects of
conflict events. We assume that these anticipation, impact, and aftermath components can be
modeled using a distributed lead and lag structure

Ait = ∑︂
s∈C

4∑︂
j=1

cs,i,t+jβ
−
sj ,

Iit = ∑︂
s∈C

cs,i,tβs,

Fit = ∑︂
s∈C

8∑︂
j=1

cs,i,t−jβ
+
sj ,

(2)

where C is the set containing the four conflict event types and cs,i,t denotes the count of
conflict events of type s in district i and week t . This specification allows us to investigate
concurrent conflict impacts (via βs ), preemptive relocation efforts in the month before (via
β−

sj ), and aftermath effects in the two months after conflict events (via β+
sj ).

The specification of Oit aims to capture latent spatiotemporal dependencies in displace-
ment that are not captured by the conflict event indicators. We assume that displacement due
to events other than conflict can be represented as

(3) Oit = μi + αit + λ′
if t + x′

itδ + εit , εit ∼ N
(︁
0, σ 2

i

)︁
,

where μi are district-specific intercepts and αit is a latent zero-mean trend component, re-
sponsible for capturing slow-moving within-district variables, such as droughts and economic
factors. This dynamic component is modeled using a random walk structure αit = αit−1 +ηit

where ηit ∼ N (0, θi). A factor structure with Q latent factors f t = (f1t , . . . , fQt )
′ and cor-

responding loadings λi = (λ1i , . . . , λQi)
′ accounts for latent cross-district spatial dependen-

cies. The factors f t represent unmeasured variables relevant to multiple districts, including,
for example, river levels or supraregional drought developments. A similar combination of
series-specific state space components and common latent factors as in (3) is utilized in Berry
and West (2020) and Berry, Helman and West (2020). The linear component x′

itδ captures the
impact of available control variables collected in xit . Here we include two variables measur-
ing the UNHCR-reported share of displacements due to drought and floods in district i and
week t , respectively. Broadly speaking, this allows us to control for average differences be-
tween conflict-related displacement and displacement due to droughts and floods. Finally, εit

represents a heteroskedastic error term that captures potentially varying quality of measure-
ment and heterogeneous error volatilities across districts. Importantly, the factor structure and
the heteroskedastic error term marginally imply a full N × N cross-district error covariance
matrix ��′ + � where � = (λ1, . . . ,λN)′ and � = diag(σ 2

i ).

5While count data models offer greater theoretical rigor, we choose log displacement as the outcome variable
to increase computational efficiency during model estimation while maintaining straightforward interpretation of
the coefficients. For large counts this approach closely approximates a Poisson log-normal model (Steel and Zens
(2024)).
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3.1. Prior elicitation. We pursue a Bayesian approach to parameter estimation. The
Bayesian paradigm allows for a probabilistic and intuitive interpretation of the obtained
parameter estimates and forecasts, facilitating communication of results to potential stake-
holders. Bayesian estimation requires soliciting suitable prior distributions on all relevant
parameters. Weakly informative N(0,100) priors are chosen for βs and δ, and we specify
flat priors for μi . The variance parameters σ 2

i are assumed to follow weakly informative in-
verse gamma distributions σ 2

i ∼ IG(2.5,1.5). For the state equation variances, we choose
θi ∼ IG(1,0.005), which implies relatively smooth paths of the latent trend components αit .

The factors are assumed to arise from independent Gaussian densities with unit variances,
that is, f t ∼ N (0, IQ) where IQ is the Q-dimensional identity matrix. This allows for scale
identification and implies that all the information regarding the error correlations across dis-
tricts is summarized in the factor loadings λi . For these loadings we choose an informative
prior distribution that reflects the idea that the error correlation matrix across districts is po-
tentially sparse and that the latent shocks to displacement may be uncorrelated for certain dis-
trict pairs. Specifically, we utilize the horseshoe prior of Carvalho, Polson and Scott (2009)
due to its well-documented ability to regularize noisy signals and the ease of implementa-
tion due to the algorithm proposed in Makalic and Schmidt (2016). This prior places most
probability mass on zero. Estimates of λi will, therefore, only deviate significantly from zero
in case the data is informative enough, encouraging in turn sparse estimates of ��′. Impor-
tantly, this prior mitigates the issue of overfitting when attempting to estimate an N × N

covariance matrix of εi from potentially noisy and incomplete time series.
Finally, a prior on the distributed lead and lag coefficients β+ and β− needs to be chosen.

Here we superimpose the a priori assumption that the impact of conflict on displacement plays
out relatively smoothly over time. In a setting with noisy data from conflict zones, this as-
sumption provides further structure and mitigates overfitting. To enforce smooth-distributed
lag functions for the anticipation and aftermath effects, we assume a second-order random
walk on the distributed lag coefficients

(4)

β+
s,j = 2β+

s,j−1 − β+
s,j−2 + ζ+

s,j , ζ+
s,j ∼ N

(︃
0,

τ+
s

κ+
s,j

)︃
, τ+

s ∼ IG
(︁
c+

0 , d+
0

)︁
,

β−
s,j = 2β−

s,j−1 − β−
s,j−2 + ζ−

s,j , ζ−
s,j ∼ N

(︃
0,

τ−
s

κ−
s,j

)︃
, τ−

s ∼ IG
(︁
c−

0 , d−
0

)︁
,

with diffuse priors on initial values. Further assuming κ+
s,j , κ

−
s,j ∼ G(1

2 , 1
2) marginally implies

Cauchy priors on ζ+
s,j and ζ−

s,j to induce smoothing, and we set c+
0 = c−

0 = 1 and d+
0 = d−

0 =
0.005, as suggested in Lang and Brezger (2004).

3.2. Parameter estimation and model identification. The proposed model can be esti-
mated efficiently using Markov chain Monte Carlo (MCMC) methods. In particular, the
static factor structure enables the parallelization of otherwise computationally costly sam-
pling steps, such as updating the latent state space components αit . Parallel updates of factors
and loadings further reduce the computational workload. Estimation of the model via MCMC
is especially convenient, as this facilitates the handling of missing data points via imputation
during estimation.

A sketch of the Gibbs sampling algorithm we use to sample iteratively from the conditional
posterior distributions of the parameters is as follows. First, missing data points are imputed
from yit ∼ N (Cit + Oit , σ

2
i ).6 Second, the latent states αit are updated for all i in parallel.

6We assume that missing observations are missing at random (MAR). Future research could explore a missing
not at random (MNAR) setting and develop a sample selection framework including an explicit model for the
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These updates can be conducted highly efficiently using simulation smoothing techniques, as
per Chan and Jeliazkov (2009) or McCausland, Miller and Pelletier (2011). The regression
coefficients β and δ are then jointly simulated with the intercepts μi via a single Bayesian
regression update. The prior precision matrix for β , implied by (4), can be constructed using
the ideas outlined in Chan and Jeliazkov (2009). Factors f t for all t can be updated in paral-
lel, followed by parallel Bayesian regression updates to obtain samples for the loadings λi for
all i. Finally, the variance parameters are updated using data augmentation for the horseshoe
parameters as in Makalic and Schmidt (2016), conditional updates for the Cauchy prior pa-
rameters as given in Lang and Brezger (2004), and relying on standard conjugate updates for
the remaining variance parameters σ 2

i and θi . All posterior samples are simulated from pos-
terior distributions that are conditional on all of the other parameters. In the Supplementary
Material, a Monte Carlo simulation study is presented that demonstrates that this algorithm
accurately recovers the parameters of the data-generating process.

Rotational identification of the factors f t and the corresponding loadings collected in �
typically requires a set of restrictions on the loadings matrix � (Frühwirth-Schnatter, Hossze-
jni and Lopes (2024)). However, the cross-district covariances encoded in � +��′ are iden-
tified under mild conditions. As inference on f t is not the primary goal of our analysis, we do
not restrict the loadings and factors beyond the a priori assumptions of independence across
factors and unit variances for all factors. A second identification issue is that the intercepts μi

and the level of the latent trends αit are not separately identifiable. To resolve this, we impose
a sum-to-zero constraint on αi = (αi1, . . . , αiT )′ during posterior simulation.

4. Results. The presented results are based on 12,000 posterior iterations, where the
first 2500 draws are discarded, and every fourth draw is saved to reduce the storage demand
of the results. One estimation run using R takes roughly 30 minutes on a single core of an
AMD Ryzen 5 5500U CPU. In general, convergence of the Markov chains is rapid, and the
Gibbs sampler is mixing well. Trace plots and effective sample sizes are provided in the
Supplementary Material.

To select an appropriate number of factors Q, we evaluate models with Q ranging from 1
to 10 in the course of the forecasting exercise detailed in Section 4.3. We proceed to discuss
results based on a model with Q = 2 latent factors, which maximizes out-of-sample predic-
tion accuracy across several criteria. However, the results remain similar as the number of
factors increases. An alternative, more computationally intensive approach to model selec-
tion that treats the number of factors Q as a random quantity to be estimated is discussed in
Frühwirth-Schnatter, Hosszejni and Lopes (2024).

4.1. The short-run impact of conflict on displacement in Somalia. The main results of the
estimation exercise are summarized in Figure 3, which gives point estimates and estimated
uncertainty bounds for β , β+, and β−, the distributed lead and lag coefficients of the four
conflict event indicators. These estimates indicate that, on average, a single battle event is
associated with a 3% increase in displacements in the same week, with no detectable after-
math or anticipation effects. The effect of explosions and remote violence events is slightly
stronger, with a 5% increase on average in the same week, and more pronounced aftermath
effects. Significant anticipation, impact, and aftermath effects are observed for strategic de-
velopments, with a peak increase of between 15% and 20% within the same week and de-
tectable effects up to more than a month after the event occurred. Strategic developments

selection mechanism (i.e., observing any displacement). However, this approach is likely to significantly increase
computational complexity and typically requires exclusion restrictions (Wagner, Frühwirth-Schnatter and Jacobi
(2023)), which may be particularly difficult to identify in a data-sparse context.
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FIG. 3. Posterior distributions of the estimated distributed lead, lag, and impact coefficients β , β+, and β− for
the four considered types of conflict events. Shaded areas correspond to 95% credible intervals.

typically correspond to high-visibility events with substantive information flow, such as land
transfers or troop movements, signaling structural shifts in the balance of power and the po-
tential for future violence.7 These events appear to prompt both preemptive relocation efforts
and strong aftermath effects, potentially in groups that are now exposed to new threats. Ev-
idence for the important role of structural change in conflict-driven displacement patterns is
also reported in Schon (2015). The pattern after events involving violence against civilians
is more intricate, with a positive but insignificant point estimate in the week of the event,
a stronger effect in the week after, and then some decreases in displacement occurrences in
the following weeks. In general, the results in Figure 3 illustrate the complex and varied na-
ture of displacement dynamics in the context of different types of conflict events. While we
can speculate what drives these empirical patterns, these hypotheses cannot be conclusively
evaluated using the data at hand, warranting further research.

In Figure 4 we present additional results from an alternative model specification that sug-
gests the presence of nonlinear effects of the number of conflict events per week on displace-
ment. The left column shows estimated coefficients of binary indicators representing weeks
with any conflict event, while the right column shows estimated coefficients of the number of
conflict events beyond the first in weeks with multiple events. Thus, the left column captures
the effect of experiencing at least one conflict event compared to none, while the right column
measures the incremental effect of each additional event beyond the first, distinguishing the
effects of isolated vs. more intense periods of conflict on displacement.

The results suggest that, for battle events, the average displacement effects reported in
Figure 3 are primarily driven by the presence of any battle event, highlighting the significant
impact of experiencing a state of organized armed conflict compared to not being in one.
In contrast, the average effects of explosive attacks and remote violence appear to be driven
more strongly by weeks with multiple events. This suggests a cumulative and compounding
psychological and physical toll of frequent explosions and remote attacks occurring within
short periods. Similar evidence of nonlinear effects, where higher conflict intensity leads
to greater displacement while this is not necessarily the case for lower conflict intensity,
is reported in Bohra-Mishra and Massey (2011). For strategic developments and violence
against civilians, we estimate patterns similar to their respective average effects for both the
presence of any event and subsequent event counts.

To summarize, our estimates indicate that displacement as a response to conflict mate-
rializes very rapidly, particularly following battles and explosions, with the majority of the

7Within the considered sample period, the composition of strategic developments, according to the ACLED
subevent categories, is as follows. “Agreement” accounts for 4%, “Arrests” for 7%, “Change to group/activity”
for 14%, “Disrupted weapons use” for 22%, “Headquarters or base established” for 1%, “Looting/property de-
struction” for 12%, “Nonviolent transfer of territory” for 34%, and “Other” for 5% of the events. Developing
methods that can robustly disentangle the effect of conflict by many, potentially very rare subevent types, is a
promising avenue for future research.
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FIG. 4. Posterior distributions of the estimated distributed lead, lag, and impact coefficients β , β+, and β− in
the nonlinear specification. Shaded areas correspond to 95% credible intervals.

impact typically observed within zero to two weeks after the event. However, both the mag-
nitude and duration of the estimated effects vary significantly by type of conflict event. Dis-
placement effects may last longer, up to several weeks, following strategic developments.
Furthermore, the impact of conflict on displacement is characterized by intricate nonlinear
patterns, especially in the context of organized armed battle events. A discussion on the in-
ternal and external validity of these results is provided in the Supplementary Material.

4.2. Results on spatiotemporal dependencies. In Figure 5 we provide the estimated pos-
terior distributions of the district-specific, latent trend components αit for eight example dis-
tricts. The estimation results reveal several distinct patterns concerning the trending behavior
of the displacement series. In certain districts the data is informative on highly intricate latent
trends αit . These trend components capture all sufficiently slow-moving, district-specific de-
velopments that correlate with displacement and are not accounted for by the cross-district
factor structure, the included control variables, and the leads and lags of the conflict mea-

FIG. 5. Posterior distributions of the estimated idiosyncratic trend components αit for eight example districts
across the sample period from January 2017 to July 2023. Shaded areas correspond to 95% credible intervals.
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FIG. 6. Estimated spatial dependency structure: (a) shows posterior mean estimates of error correlations across
districts. Ordering of rows and columns of the matrices is based on clustering highly correlated districts for
visualization purposes. (b) shows an estimated partial correlation network derived from the posterior distribution
of � + ��′. Stronger partial correlations correspond to less transparent edges.

sures included in the model. The complex nature of the trend components αit highlights the
importance of such temporally correlated within-district factors (e.g., local droughts) when
analyzing displacement patterns. The estimated paths of αit further demonstrate that a con-
ceptually simpler, classical panel specification based on district fixed effects—implying con-
stant αit for all i—is likely underspecified. Additional evidence for this claim is provided in
Section 4.3.

Next, we focus on posterior mean estimates of the covariance structure across districts
implied by the estimates of the idiosyncratic variances σ 2

i and the factor loadings λi . The
implied correlation matrix is visualized in Figure 6. It shows a significant amount of cross-
district correlation in the unobserved shocks to displacement. Blocks of correlated districts
are visible in panel (a). Almost all nonzero correlations are estimated to be positive, implying
predominantly positive co-movements in the latent shocks to displacement εi . Suspected un-
derlying, unmeasured factors, such as flash floods or political developments concerning more
than one district, are in line with this finding. The correlation matrices are further estimated
to be pronouncedly sparse, that is, including many zero elements, which is a consequence of
the shrinkage prior specified on the elements of λi . For completeness, estimates of the factors
f t based on a singular value decomposition are shown in the Supplementary Material.

Panel (b) of Figure 6 shows a partial correlation network, based on the estimated error
covariance matrix. Posterior mean estimates of the partial correlations are used, and partial
correlations where zero is included in the 99% credible interval are dropped. More transparent
lines correspond to smaller partial correlations. The resulting network structure is broadly
clustered into two geographically distinct blocks of districts. The first cluster, in Southern
Somalia, is characterized by districts close to the capital district, connected by rivers, and
subject to flash flooding. In addition, these districts correspond to the main area of operations
of Islamist militant group Al Shabaab, a key actor in the Somalia civil war. The second cluster,
in the North of the country, corresponds to Somaliland and Puntland, two larger regions
that pursue independence from the Southern parts of Somalia. Somaliland and Puntland are
further characterized by repeated armed clashes over disputed districts and provinces in their
bordering region. It is worth noting that our model does detect these geographic clusters and
dependency structures without access to any explicit information on the spatial location of
the districts.

Finally, in Figure 7 we visualize the fitted values of the model together with the raw data.
Focusing on the previously considered eight example districts again, we find that the model is
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FIG. 7. Observed log displacement yit together with posterior means of fitted values ŷit for eight example
districts across the sample period from January 2017 to July 2023.

able to follow the general trends in yit relatively well. To give a sense of overall in-sample fit,
the coefficient of determination of the Bayesian approach is R2 = 0.60. The results nonethe-
less demonstrate the difficulty of designing empirical models that can consistently extract
relevant information from potentially noisy and highly fluctuating time series in the context
of displacement modeling, as also noted in Pham and Luengo-Oroz (2023). More generally,
empirical modeling of human mobility patterns over time is well known to be highly chal-
lenging (Bijak et al. (2019)).

4.3. Forecasting exercise. Recent contributions have shown that the widely and tradi-
tionally used gravity models of migration are not well suited for forecasting migratory move-
ments and that well-designed time series approaches can outperform gravity models by a
significant margin (Welch and Raftery (2022), Beyer, Schewe and Lotze-Campen (2022)).
Moreover, even highly flexible machine learning frameworks tend to perform only on par
with simple benchmarks when forecasting displacement on a disaggregated level (Pham and
Luengo-Oroz (2023)). At the same time, forecast-based humanitarian efforts are attracting
growing attention (Thalheimer, Simperingham and Jjemba (2022)). In this context we con-
duct an out-of-sample forecasting exercise to evaluate the performance of the model relative
to several benchmarks. In addition, the model specified in Section 3 is relatively flexible, war-
ranting some evaluation of its out-of-sample performance to mitigate concerns about overfit-
ting.

We focus on obtaining one-week ahead predictions for displacements for all 74 districts
under consideration. For this we repeatedly split the data set into a training sample with a
length of 291 weeks and a single one-step ahead hold-out week. The parameters of the com-
peting modeling frameworks are estimated using the training sample and are subsequently
used to predict displacement in the test week. This exercise is repeated 52 times, shifting the
time window of the training sample by one week each time, until eventually all weeks in the
last year of the full sample period have been used as holdout weeks once.

We compare 10 different forecasting methods. First, we consider several benchmarks, in-
cluding a random walk model, rolling averages with varying window sizes, and an AR(1)
model. Long-run average and long-run median displacement in each district, computed across
the whole sample, are included as simplest benchmarks. Second, two fixed effects panel re-
gression models leveraging a full set of week and district fixed effects are included in the
exercise. The first panel model treats unobserved displacement as zero observations, while
the second one drops unobserved displacement from the data set. Finally, the Bayesian model
introduced in Section 3 is estimated. In terms of covariates, all panel models include lagged
conflict indicators from t − 1 to t − 8.
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TABLE 1
Results of Forecasting Exercise

Model RMSE DM p-val (RMSE) MAE DM p-val (MAE) Corr.

Random Walk 1.673 4.67 × 10−15 1.175 1.01 × 10−09 0.593
AR(1) 1.473 3.00 × 10−03 1.114 1.64 × 10−06 0.636

Long Term Average 1.766 2.86 × 10−52 1.376 1.52 × 10−70 0.465
Long Term Median 1.829 3.05 × 10−60 1.415 7.15 × 10−78 0.434

Rolling Average (4 Weeks) 1.627 6.46 × 10−12 1.152 2.07 × 10−07 0.606
Rolling Average (8 Weeks) 1.623 1.52 × 10−11 1.152 1.52 × 10−07 0.605
Rolling Average (12 Weeks) 1.614 7.92 × 10−11 1.148 4.44 × 10−07 0.607

OLS 2FE DL (excl. zeros) 1.648 1.06 × 10−32 1.308 1.37 × 10−52 0.456
OLS 2FE DL (incl. zeros) 2.068 1.49 × 10−86 1.597 7.93 × 10−114 0.390

Bayesian DL 1.429 – 1.058 – 0.643

Note: “RMSE” is the root mean squared error. “MAE” is the mean average error. “Corr.” is the correlation of the
point predictions and the true values. “DL” indicates the distributed lag models. “DM p-val” refers to the p-value of
a Diebold–Mariano test under the null hypothesis of equal predictive accuracy relative to the Bayesian DL model.
Results are averaged across 52 one-step-ahead hold-out samples. Bold values indicate the best performance in
each column.

The results of the forecasting exercise are summarized in Table 1, where we report the
root mean squared error (RMSE) and the mean absolute error (MAE) of the point forecasts
as well as the correlation of the point predictions and the true holdout values. All criteria are
averaged across the 52 hold-out periods. We also report the p-values obtained from Diebold–
Mariano tests (Diebold (2015)) with the null hypothesis of equivalent predictive performance
relative to the Bayesian model.

We find that forecasts based on rolling averages already outperform the random walk
model as well as the panel fixed effects regression considerably. This is in line with the
findings in Pham and Luengo-Oroz (2023). The fixed effects panel models give considerably
worse results than the simple AR(1) model. The Bayesian approach, introduced in Section 3,
can improve over all benchmark models in all three forecast quality criteria.

In the Supplementary Material, we provide additional predictive results for varying values
of the number of latent factors Q. Here Q = 2 outperforms the other specifications, but in
general, the results are relatively similar. In addition, we evaluate an alternative prior setting
based on independent horseshoe shrinkage priors for the conflict impact coefficients β+

sj and

β−
sj . We find that, while the overall performance is similar to the smoothing prior introduced in

Section 3, the independence prior performs slightly worse in terms of RMSE and correlations
of predicted and true values. This provides some evidence that conflict effects tend to play
out rather smoothly in the setting considered here.

It is important to note that the results of this small forecasting exercise are no conclusive
evidence that the proposed model will show any kind of “optimal” forecasting performance
in a given displacement forecasting setting. After all, the model is not explicitly designed
with forecasting performance in mind. However, these results are a good indication that the
additional complexity we introduce to capture latent spatiotemporal dependencies does not
lead to severe overfitting concerns. Overall, the results in Table 1 are indicative of a certain
strength of the proposed Bayesian framework when it comes to short-term displacement pre-
dictions. Further investigations and extensions toward fully-fledged early warning systems
(Martin and Singh (2019)) or a forecasting tool for forced displacement flow matrices in the
style of Welch and Raftery (2022) are promising future research avenues.



298 G. ZENS AND L. THALHEIMER

Finally, it is important to emphasize that this forecasting exercise does not fully reflect
a real-time forecasting scenario for policy intervention in acute conflict situations. Emulat-
ing such an exercise requires taking into account the idiosyncrasies of real-time data flows
and ex post data revisions, which are typically not documented in our setting. In addition,
while ACLED conflict data are released frequently, UNHCR displacement data are released
irregularly. Nevertheless, we believe that our findings are useful for future policy design by
deepening the understanding of the relationship between conflict and displacement as well as
by providing a starting point for developing specialized models in similar settings that allow
for real-time data flows.

5. Discussion & concluding remarks. Drawing on unique and granular displacement
data from Somalia, this paper empirically investigates the short-run dynamics of conflict and
displacement. We highlight several challenges that are likely to complicate working with
similar data sets and develop a Bayesian statistical approach aiming to overcome these chal-
lenges. We point out that our considerations apply more generally to the analysis of large N

large T panel data sets. The utility of the approach is demonstrated in two empirical exer-
cises focused on impact evaluation and humanitarian forecasting. We find that the response
of displacement to conflict is rapid, nonlinear in the number of conflict events, and hetero-
geneous by conflict type. Finally, the model shows good forecasting performance relative
to benchmark models. Besides potential use cases for empirical analyses and for human-
itarian forecasting purposes, the modeling framework and derived impact estimates are of
relevance for policymakers, nongovernmental organizations, and complementary theoretical
and simulation-based literature.

In terms of policy insights, we acknowledge that any real and definite solution concern-
ing the root causes of displacement in Somalia will require ending the ongoing state of civil
war. However, this goal will remain unlikely for some time to come, not only in Somalia
but in many other parts of the world that experience prolonged periods of conflict. As long
as conflict situations are not fully resolved, a thorough understanding of the determinants of
displacement is a necessary prerequisite to alleviate the manifold issues that displaced popu-
lations face and to design appropriate policies that focus on assistance, prevention, and relo-
cation (Engel and Ibáñez (2007), Dirikgil (2023)). In this context our findings highlight the
importance of rapid response teams, as displacement tends to occur swiftly following conflict.
The relevance of daily and weekly time frames in the context of conflict-driven displacement
cannot be overstated. Another notable observation is the apparent lack of anticipation effects
in the case of battles, which suggests that civilians either lack adequate forewarning, choose
not to relocate preemptively, or lack the resources to do so. Disseminating information on
battle-related developments, if available, could facilitate preemptive relocation efforts. Our
findings further underscore the importance of strategic developments. It appears that such
events hold significant predictive power for displacement. In addition, local populations may
be anticipating some of these events. Training and empowering local communities to report
anticipated events could, therefore, support anticipatory action.

Concerning quantitative research on conflict-driven displacement, this study highlights the
importance of a granular perspective. Our findings suggest that relying on aggregate displace-
ment data may obscure important details, limiting the depth and accuracy of empirical anal-
ysis. In addition, a more nuanced approach to the broad concept of “conflict,” for instance,
based on disaggregations by conflict type, is likely to unveil patterns and dynamics that are
otherwise overlooked. In general, there is a significant need for better and more granular
data, not only on displacement and conflict but also on environmental drivers and modulating
factors such as food insecurity.

In concluding the article, several pathways for future research and modeling approaches
emerge. One key area is the exploration of differential vulnerabilities of populations, which
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could be explored potentially through hierarchical random effects models. Another avenue is
the investigation of spatial spillovers, which can illuminate the broader regional impacts of
conflict. Mixed-frequency models (Ghysels, Sinko and Valkanov (2007)) could be developed
to overcome some of the issues of data availability on a granular level. Measurement error
models (Carroll et al. (2006)) concerning both displacement measurements and conflict pre-
dictor variables could further improve the modeling framework. Finally, predictive modeling
of inflowing IDPs, which focuses on where people move to, is another promising research
direction with the potential to enhance the ability to anticipate and respond to crisis-induced
displacement events.
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SUPPLEMENTARY MATERIAL

Additional results, replication code, study context and limitations (DOI: 10.1214/24-
AOAS1959SUPP; .zip). The Supplementary Material provide additional results, replication
code, a Monte Carlo simulation study, trace plots, and MCMC convergence diagnostics, a
review of the theoretical and empirical literature on conflict and forced displacement, as well
as a historical overview of the civil war in Somalia. In addition, potential shortcomings of the
employed data are highlighted and a discussion of internal and external validity of the results
is provided.

REFERENCES

ABEL, G. J., BROTTRAGER, M., CUARESMA, J. C. and MUTTARAK, R. (2019). Climate, conflict and forced
migration. Glob. Environ. Change 54 239–249.

BALL, P. and ASHER, J. (2002). Statistics and Slobodan: Using data analysis and statistics in the war crimes
trial of former president Milosevic. Chance 15 17–24. MR1930510 https://doi.org/10.1080/09332480.2002.
10554820

BERRY, L. R., HELMAN, P. and WEST, M. (2020). Probabilistic forecasting of heterogeneous consumer
transaction–sales time series. Int. J. Forecast. 36 552–569.

BERRY, L. R. and WEST, M. (2020). Bayesian forecasting of many count-valued time series. J. Bus. Econom.
Statist. 38 872–887. MR4154894 https://doi.org/10.1080/07350015.2019.1604372

BEYER, R. M., SCHEWE, J. and LOTZE-CAMPEN, H. (2022). Gravity models do not explain, and cannot predict,
international migration dynamics. Humanit. Soc. Sci. Commun. 9 1–10.

BIJAK, J., DISNEY, G., FINDLAY, A. M., FORSTER, J. J., SMITH, P. W. F. and WIŚNIOWSKI, A. (2019). Assessing
time series models for forecasting international migration: Lessons from the United Kingdom. J. Forecast. 38
470–487. MR4002373 https://doi.org/10.1002/for.2576

BOHRA-MISHRA, P. and MASSEY, D. S. (2011). Individual decisions to migrate during civil conflict. Demography
48 401–424. https://doi.org/10.1007/s13524-011-0016-5

CARROLL, R. J., RUPPERT, D., STEFANSKI, L. A. and CRAINICEANU, C. M. (2006). Measurement Error in
Nonlinear Models: A Modern Perspective, 2nd ed. Monographs on Statistics and Applied Probability 105.
CRC Press/CRC, Boca Raton, FL. MR2243417 https://doi.org/10.1201/9781420010138

CARVALHO, C. M., POLSON, N. G. and SCOTT, J. G. (2009). Handling sparsity via the horseshoe. In Artificial
Intelligence and Statistics 73–80. PMLR.

CHAN, J. C. C. and JELIAZKOV, I. (2009). Efficient simulation and integrated likelihood estimation in state space
models. Int. J. Math. Model. Numer. Optim. 1 101–120.

CONTE, A. and MIGALI, S. (2019). The role of conflict and organized violence in international forced migration.
Demogr. Res. 41 393–424.

https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1214/24-AOAS1959SUPP___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjBjZjU6ZWJkM2EwYTg1NGQ3YjczZmE5Y2Y1ZTk1NGQ3ZDY2OTM2NTE0YWViNGQ5NGU5N2Y4ZGUwMzMwY2UxYmFiMTE4ODpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1214/24-AOAS1959SUPP___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjBjZjU6ZWJkM2EwYTg1NGQ3YjczZmE5Y2Y1ZTk1NGQ3ZDY2OTM2NTE0YWViNGQ5NGU5N2Y4ZGUwMzMwY2UxYmFiMTE4ODpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=1930510___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmY4ZmE6N2JkNzBlNzNkMTQ5OTc1NDA4NDY3ODk4ZTY4ODExODAwNjllZDRkM2MxM2JhMGEzN2Y0ZWE4M2NiMzVkOWMwMzpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1080/09332480.2002.10554820___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjFlZTM6NTAxYjliNzY2NjhhYzAyMjRiMjIzNTEyMjJkOWRmZmExY2NhZDgxYjliYzI4OTVkNTcwNmVjMDA3MmY4MTY3ZTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1080/09332480.2002.10554820___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjFlZTM6NTAxYjliNzY2NjhhYzAyMjRiMjIzNTEyMjJkOWRmZmExY2NhZDgxYjliYzI4OTVkNTcwNmVjMDA3MmY4MTY3ZTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=4154894___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjJlYjI6OWFhMWQxMTMyZjhkNzg2NDI2MjJlZTViMWFjZGUwNzllMTAyZjU2ODVkYjVhMGE3NGNmMDAwOGM0M2EwYTQyYjpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1080/07350015.2019.1604372___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmEwYWI6MTFjZTBkMjJmM2Y2NDUwZDBiOGRlMzQ0ZWI4ZjU1ZWU0Y2UzNTI2NDFmZTNiYjk5YjhhYzA5ZmIyOThhZDI1MzpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=4002373___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmNlODQ6ZjdhNzQwNTZkZjdjODgxYjBmYjAyMDg2NzBhODE3ZjdiZjUyYzQ0Y2RlYmEzYzNjY2Q5ODZlY2Q2YWVlYjMzNzpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1002/for.2576___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmVkNDM6YzNkMDAzOWEyN2M5YWIzNzk2Yjk3ODRlNjc3NGVhYmZjYmY2N2ZjZjhhZGEwYWE3MzZlODc5Mjc3YjU4OGJlYTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1007/s13524-011-0016-5___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjI2MDQ6YjE3Y2EyYjE1ZjFjNDcyNWVhN2U1OGIwMjA3NzI4OTBkYWQyODU2MTgwYTdhNGMwMDRmZDRjOGY3ZmNiYzhmYzpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=2243417___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjUwMzk6MDlkYmZlNzVjOWM4YWNjNzZjNGM2ZDYyZDZhNWQxNWEwMzQ1MjYyZDQyNzVkYTc4YTFhYmJkMWYwNjIzOTczNTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1201/9781420010138___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmZlZWQ6ZWRjNjhhODVhMjc5ZmE2MjBjYjAwMGNiMzU3YTZmODkxNGQ2ZjdlZTY4MzNkZGQ0NTg0MzdhZjRkMTVlZDdmYTpwOlQ6Tg


300 G. ZENS AND L. THALHEIMER

CONTI, G., FRÜHWIRTH-SCHNATTER, S., HECKMAN, J. J. and PIATEK, R. (2014). Bayesian exploratory factor
analysis. J. Econometrics 183 31–57. MR3269916 https://doi.org/10.1016/j.jeconom.2014.06.008

DAVENPORT, C., MOORE, W. and POE, S. (2003). Sometimes you just have to leave: Domestic threats and forced
migration, 1964-1989. Int. Interact. 29 27–55.

DIEBOLD, F. X. (2015). Comparing predictive accuracy, twenty years later: A personal perspective on the use
and abuse of Diebold-Mariano tests. J. Bus. Econom. Statist. 33 1–9. MR3303732 https://doi.org/10.1080/
07350015.2014.983236

DIRIKGIL, N. (2023). Addressing the prevention of internal displacement: The right not to be arbitrarily displaced.
J. Int. Migr. Integr. 24 113–138.

DRC (2022). Global displacement forecast 2022. Danish Refugee Council Technical Report.
ECK, K. (2012). In data we trust? A comparison of UCDP GED and ACLED conflict events datasets. Coop. Confl.

47 124–141.
ENGEL, S. and IBÁÑEZ, A. M. (2007). Displacement due to violence in Colombia: A household-level analysis.

Econ. Dev. Cult. Change 55 335–365.
FRÜHWIRTH-SCHNATTER, S., HOSSZEJNI, D. and LOPES, H. F. (2024). Sparse Bayesian factor analysis when

the number of factors is unknown. Bayesian Anal. 1 1–31.
GHYSELS, E., SINKO, A. and VALKANOV, R. (2007). MIDAS regressions: Further results and new directions.

Econometric Rev. 26 53–90. MR2339264 https://doi.org/10.1080/07474930600972467
HATTON, T. J. (2009). The rise and fall of asylum: What happened and why? Econ. J. 119 F183–F213.
LANG, S. and BREZGER, A. (2004). Bayesian P-splines. J. Comput. Graph. Statist. 13 183–212. MR2044877

https://doi.org/10.1198/1061860043010
LU, X., BENGTSSON, L. and HOLME, P. (2012). Predictability of population displacement after the 2010 Haiti

earthquake. Proc. Natl. Acad. Sci. USA 109 11576–11581.
MAKALIC, E. and SCHMIDT, D. F. (2016). A simple sampler for the horseshoe estimator. IEEE Signal Process.

Lett. 23 179–182.
MARTIN, S. F. and SINGH, L. (2019). Big data and early warning of displacement. In Mobilizing Global Knowl-

edge: Refugee Research in an Age of Displacement 129–150.
MCCAUSLAND, W. J., MILLER, S. and PELLETIER, D. (2011). Simulation smoothing for state-space models:

A computational efficiency analysis. Comput. Statist. Data Anal. 55 199–212. MR2736547 https://doi.org/10.
1016/j.csda.2010.07.009

OH, W. S., MUNEEPEERAKUL, R., RUBENSTEIN, D. and LEVIN, S. (2024). Emergent network patterns of internal
displacement in Somalia driven by natural disasters and conflicts. Glob. Environ. Change 84 102793.

PHAM, K. H. and LUENGO-OROZ, M. (2023). Predictive modeling of movements of refugees and internally
displaced people: Towards a computational framework. J. Ethn. Migr. Stud. 49 408–444.

PIIRONEN, J. and VEHTARI, A. (2017). Sparsity information and regularization in the horseshoe and other shrink-
age priors. Electron. J. Stat. 11 5018–5051. MR3738204 https://doi.org/10.1214/17-EJS1337SI

RALEIGH, C., LINKE, A., HEGRE, H. and KARLSEN, J. (2010). Introducing ACLED: An armed conflict location
and event dataset: Special data feature. J. Peace Res. 47 651–660.

SARZIN, Z. I. (2017). Stocktaking of global forced displacement data. World Bank Policy Research Working
Paper 7985.

SCHMEIDL, S. (1997). Exploring the causes of forced migration: A pooled time-series analysis, 1971–1990. Soc.
Sci. Q. 78 284–308.

SCHMEIDL, S. (2001). Conflict and forced migration: A quantitative review, 1964–1995. In Global Migrants,
Global Refugees: Problems and Solutions 62–94.

SCHON, J. (2015). Focus on the forest, not the trees: A changepoint model of forced displacement. J. Refug. Stud.
28 437–467.

SCHWARTZ, J. (2000). The distributed lag between air pollution and daily deaths. Epidemiology 11 320–326.
STEEL, M. F. and ZENS, G. (2024). Model uncertainty in latent Gaussian models with univariate link function.

Preprint. Available at arXiv:2406.17318.
TAI, X. H., MEHRA, S. and BLUMENSTOCK, J. E. (2022). Mobile phone data reveal the effects of violence

on internal displacement in Afghanistan. Nat. Hum. Behav. 6 624–634. https://doi.org/10.1038/s41562-022-
01336-4

THALHEIMER, L., SCHWARZ, M. P. and PRETIS, F. (2023). Large weather and conflict effects on internal dis-
placement in Somalia with little evidence of feedback onto conflict. Glob. Environ. Change 79 102641.

THALHEIMER, L., SIMPERINGHAM, E. and JJEMBA, E. W. (2022). The role of anticipatory humanitarian action
to reduce disaster displacement. Environ. Res. Lett. 17 014043.

UNHCR (2017). Internal displacements recorded by Protection and Return Monitoring Network Somalia. Notes
on methodology.

https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=3269916___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjAwMTk6YzQ1MGU2MmViNjk2OWYxOGNmY2E4YjdiMzBhOThiMDBmYjdkYmYxYWVkN2Q5YjMzYTVjNGMwNDA0YWIyNGE4NTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1016/j.jeconom.2014.06.008___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmJmZGM6NzZmNjQwM2RkOTIzZDdhMTAzY2Y3NDI0NjVhODc1ZjI2YmJkMTY5ODRhNDEzMGYwOWVmMDkxNjA3YWFiNjljMzpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=3303732___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjA4MjA6MjM2NGEzYTAyNjQ5NzdmMjkwODdiNjZiNmVjNjliYWVhMzQ0NGNlNzM5Y2JkZjQ0MTljOTVkZjIwYTdkOTkwZjpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1080/07350015.2014.983236___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjdhNWY6YWNiNDc2ZDExNGNmMTdhYTVhY2E1YWM3OTdlYTc5NjFjMGQxNzllNzQ0NDk2ZmJkODBmYWZmZmY4NGM0NDVkNDpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1080/07350015.2014.983236___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjdhNWY6YWNiNDc2ZDExNGNmMTdhYTVhY2E1YWM3OTdlYTc5NjFjMGQxNzllNzQ0NDk2ZmJkODBmYWZmZmY4NGM0NDVkNDpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=2339264___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmFhMGY6ODMxNWEwM2IxMDY2MTM4OWY3NmE4NmY5NGExOTU4ODM2NzlmY2YxNzI3ZGFiYjBkZWRjZjQ4ODljYjYwNGYwZTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1080/07474930600972467___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjBlYTM6MWM3N2QzZGQwNTdkMDA0NmQ1MDM2YjgxYzQyMzgyYTEzNTAyY2IwNTE0ZDFjMzdjOWJiYzE0NGFkNmQ3NTFlNzpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=2044877___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmM4MWQ6ZjhmODAyYWNiYjg2YmMwMjZiZDc2YTAwMDA5NmZjZjVkYjdkZmI4ZGQ1YTliNWQ3MjM1NmNkMzVhODljZjRhZDpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1198/1061860043010___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmRiNjU6NTcyYjk3MjY2NTY0OTYzZDViYjA5ODcxM2RiZTI3MTliZGM2MjQ3NGZhZmVlZjVjYWI2Mjc0YjM3MTVlN2RhZjpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=2736547___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmMwZDA6NjUwMTI1NDJmMzNhNzU2YjJlZmE0ODlmNzUzYTdmZDc5ODA1OTE0NmJmODEyMzdmYjJhYjc1MmJjNTA5NjNkMTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1016/j.csda.2010.07.009___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjRhOTI6MTM3MzRhNWJkNDE0NWQ1NmFlMDM5YzU4OTk4NTcxMzFiNGJkMjcwM2UyMTU0MGQyMGNhNDdjOGU1YmM2NDA0OTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1016/j.csda.2010.07.009___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjRhOTI6MTM3MzRhNWJkNDE0NWQ1NmFlMDM5YzU4OTk4NTcxMzFiNGJkMjcwM2UyMTU0MGQyMGNhNDdjOGU1YmM2NDA0OTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=3738204___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjVkNTI6YWJlZjdhMjY0MmExMTZlMDhkYmQ2NjhiMWM1MTA4NGJmYjM0ODVlODYyOGRmYzA2ZmVjMDBmYTQwZTM5NTdlOTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1214/17-EJS1337SI___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmNkNzQ6ZDQ3NjUxMTI0ZGFhZGFmZWY5YjFkMWExNjY1MTNhMzY4ZDhlMWNlODg1Mzk1YjM1N2JjZDUwMmJmMTU3M2Y5MjpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://arxiv.org/abs/2406.17318___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjQ5MDM6MjZlZTE2ZGM1YThjYTJmYmNiMjlkNTMxOTJjYTdjM2Q4NzI5NmFmNmJlYTk5NDUxZDg2OGJhZjQ2ZmQxNGJjNjpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1038/s41562-022-01336-4___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmM1Yzk6NWE5NTk5NDc3ZWIwOTEyY2NmMjcxN2YxMTVhMzE1MTg1ODdlNjEyMDgzMTZlYWYwZmYwMDk4NWNiYjZiODc3NjpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1038/s41562-022-01336-4___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmM1Yzk6NWE5NTk5NDc3ZWIwOTEyY2NmMjcxN2YxMTVhMzE1MTg1ODdlNjEyMDgzMTZlYWYwZmYwMDk4NWNiYjZiODc3NjpwOlQ6Tg


SHORT-TERM DYNAMICS OF CONFLICT-DRIVEN DISPLACEMENT 301

WAGNER, H., FRÜHWIRTH-SCHNATTER, S. and JACOBI, L. (2023). Factor-augmented Bayesian treatment effects
models for panel outcomes. Econom. Stat. 28 63–80. MR4644292 https://doi.org/10.1016/j.ecosta.2022.04.
003

WELCH, N. G. and RAFTERY, A. E. (2022). Probabilistic forecasts of international bilateral migration flows. Proc.
Natl. Acad. Sci. USA 119 e2203822119.

WEST, M. and HARRISON, J. (1997). Bayesian Forecasting and Dynamic Models, 2nd ed. Springer Series in
Statistics. Springer, New York. MR1482232

WYCOFF, N., ARAB, A., DONATO, K., SINGH, L., KAWINTIRANON, K., LIU, Y. and JACOBS, E. (2023). Fore-
casting Ukrainian refugee flows with organic data sources. Int. Migr. Rev. 01979183231203931.

ZENS, G. and THALHEIMER, L. (2025). Supplement to “The short-term dynamics of conflict-driven displacement:
Bayesian modeling of disaggregated data from Somalia.” https://doi.org/10.1214/24-AOAS1959SUPP

https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=4644292___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3Ojc5NzE6MTdhMDRkYTM5MDdlYzVmNzk2ZGU2Njg1NThjODcwNzZmNDlhZmFhMDJmYWRhMTI1ZjI2NzAzNTAwYzVmY2VlYzpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1016/j.ecosta.2022.04.003___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjBkN2Q6YmEzNTUxYjg5Mjg3MGZmZjAxZWQ0YTk0NzBjNjBmNzNiMWRlMGFiM2M3ZDVkYTgzMWQ1ZWJkNzU0NjBjMjA2OTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1016/j.ecosta.2022.04.003___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OjBkN2Q6YmEzNTUxYjg5Mjg3MGZmZjAxZWQ0YTk0NzBjNjBmNzNiMWRlMGFiM2M3ZDVkYTgzMWQ1ZWJkNzU0NjBjMjA2OTpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://mathscinet.ams.org/mathscinet-getitem?mr=1482232___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3OmRjNmM6NmIwMWE4YjhhYjRlZmY2MDE4Mzg3OWRjOWFlZjBkNmU5YzlhOGQyNGU0MDc3MzEwZTMwZTIyOTE2MDVhM2QwYjpwOlQ6Tg
https://protect.checkpoint.com/v2/r02/___https://doi.org/10.1214/24-AOAS1959SUPP___.YzJlOmlpYXNhOmM6bzowNmY1ZGI2YWIzMzEwNDUwNGQ3YmJjNDRmMTZjNGQ3Yjo3Ojk1YmM6Nzc4NzFjMDFjN2NhMDYyNmQ2ZDdmZGJhNDRlNzdiZjgxYmUxN2I5NzgwNzNjZTVlMTI5OTU3OGY4Yzk3MWFjMjpwOlQ6Tg

	Introduction
	Data description
	Data on internal displacement
	Data on conflict and conflict-related events

	Statistical framework
	Prior elicitation
	Parameter estimation and model identification

	Results
	The short-run impact of conflict on displacement in Somalia
	Results on spatiotemporal dependencies
	Forecasting exercise

	Discussion & concluding remarks
	Acknowledgments
	Supplementary Material
	References

